Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng – https://thevesta.vn
Bạn đang đọc: Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng – https://thevesta.vn
Xem thêm: Cách khắc phục lỗi Google map: mất tín hiệu GPS, không định vị chỉ đường được – Sao Hải Vương
Nội dung bài viết Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng:
Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng. Phương pháp giải. Để tính khoảng cách từ điểm 1 đường thẳng A ta dùng công thức. Các ví dụ. Ví dụ 1: Cho đường thẳng A: 5x + 34 – 5 = 0 a) Tính khoảng cách từ điểm A(-1; 3) đến đường thẳng A. b) Tính khoảng cách giữa hai đường thẳng song song A và A’: 5x + 3y + 8 = 0. a) Áp dụng công thức tính khoảng cách ta có: d(BA) = 1. b) Do M(1; 0) CA nên ta có d(A; A’) = d(M, A’). Ví dụ 2: Cho 3 đường thẳng có phương trình. Tìm tọa độ điểm M nằm trên A, sao cho khoảng cách từ M đến A bằng 2 lần khoảng cách từ M đến. Khoảng cách từ M đến A, bằng 2 lần khoảng cách từ M đến A, nên ta có d(M; 4,) = 2d (M; 4,). Vậy có hai điểm thỏa mãn.
Ví dụ 3: Cho ba điểm A(2; 0), B(3; 4) và P(1; 1). Viết phương trình đường thẳng đi qua P đồng thời cách đều A và B. Lời giải: Đường thẳng A đi qua P có dạng a(x – 1) + (x – 1) = 0 (a + b = 0) hay ax + by – a – b = 0. A cách đều A và B khi và chỉ. Vậy có hai đường thẳng thỏa mãn bài toán là 4: 42 – 4 – 3 = 0 và A, 20 – 3 + 1= 0. Ví dụ 4: Cho tam giác ABC có A(1; -2), B(5; 4), C(-2, 0). Hãy viết phương trình đường phân giác trong góc A Lời giải: Cách 1: Dễ dàng viết đường thẳng AB, AC có phương trình. Ta có phương trình đường phân giác góc A là nên 2 điểm B, C nằm về cùng 1 phía đối với đường thẳng A. Vậy A: 50 + – 3 = 0 là phương trình đường phân giác trong cần tìm.
Cách 2: Gọi D(c; g) là chân đường phân giác hạ từ A của tam giác ABC. Ta có BD = ABDC. Ta có phương trình đường phân giác AD. Cách 3: Gọi M (z; g) thuộc đường thẳng A là đường phân giác góc trong góc A. Ta có (AB, AM) = (AC, AM) Do đó cos(AB, AM) = cos(AC, AM). Mà AB = (4; 6); AC = (-3; 2); AM = (x – 1; 2) thay vào (*). Vậy đường phân giác trong góc A có phương trình là: 5x + y – 3 = 0. Ví dụ 5: Cho điểm C(-2; 5) và đường thẳng A: 3x – 4y + 4 = 0. Tìm trên A hai điểm A, B đối xứng với nhau qua 1 2 3 và diện tích tam giác ABC bằng 15. Dễ thấy đường thẳng A đi qua M (0; 1) và nhận u(4; 3) làm vectơ chỉ phương nên có phương trình tham số.
Source: https://thevesta.vn
Category: Chỉ Đường